Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 132(13): 4614-25, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20218710

RESUMO

Visible and ultraviolet resonance Raman (RR) spectra are reported for Fe(III)(NO) adducts of myoglobin variants with altered polarity in the distal heme pockets. The stretching frequencies of the Fe(III)-NO and N-O bonds, nu(FeN) and nu(NO), are negatively correlated, consistent with backbonding. However, the correlation shifts to lower nu(NO) for variants lacking a distal histidine. DFT modeling reproduces the shifted correlations and shows the shift to be associated with the loss of a lone-pair donor interaction from the distal histidine that selectively strengthens the N-O bond. However, when the model contains strongly electron-withdrawing substituents at the heme beta-positions, nu(FeN) and nu(NO) become positively correlated. This effect results from Fe(III)-N-O bending, which is induced by lone-pair donation to the N(NO) atom. Other mechanisms for bending are discussed, which likewise lead to a positive nu(FeN)/nu(NO) correlation, including thiolate ligation in heme proteins and electron-donating meso-substituents in heme models. The nu(FeN)/nu(NO) data for the Fe(III) complexes are reporters of heme pocket polarity and the accessibility of lone pair, Lewis base donors. Implications for biologically important processes, including NO binding, reductive nitrosylation, and NO reduction, are discussed.


Assuntos
Simulação por Computador , Compostos Férricos/química , Modelos Químicos , Mioglobina/química , Óxido Nítrico/química , Estrutura Molecular , Teoria Quântica , Análise Espectral Raman
2.
J Inorg Biochem ; 104(3): 250-60, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20007000

RESUMO

We have used low-temperature (77K) resonance Raman (RR) spectroscopy as a probe of the electronic and molecular structure to investigate weak pi-pi interactions between the metal ion-coordinated His imidazoles and aromatic side chains in the second coordination sphere of blue copper proteins. For this purpose, the RR spectra of Met16 mutants of Achromobacter cycloclastes pseudoazurin (AcPAz) with aromatic (Met16Tyr, Met16Trp, and Met16Phe) and aliphatic (Met16Ala, Met16Val, Met16Leu, and Met16Ile) amino acid side chains have been obtained and analyzed over the 100-500cm(-1) spectral region. Subtle strengthening of the Cu(II)-S(Cys) interaction on replacing Met16 with Tyr, Trp, and Phe is indicated by the upshifted (0.3-0.8cm(-1)) RR bands involving nu(Cu-S)(Cys) stretching modes. In contrast, the RR spectra of Met16 mutants with aliphatic amino acids revealed larger (0.2-1.8cm(-1)) shifts of the nu(Cu-S)(Cys) stretching modes to a lower frequency region, which indicate a weakening of the Cu(II)-S(Cys) bond. Comparisons of the predominantly nu(Cu-S)(Cys) stretching RR peaks of the Met16X=Tyr, Trp, and Phe variants, with the molar absorptivity ratio epsilon(1)/epsilon(2) of sigma( approximately 455nm)/pi( approximately 595nm) (Cys)S-->Cu(II) charge-transfer bands in the optical spectrum and the axial/rhombic EPR signals, revealed a slightly more trigonal disposition of ligands about the copper(II) ion. In contrast, the RR spectra of Met16Z=Ala, Val, Leu, and Ile variants with aliphatic amino acid side chains show a more tetrahedral perturbation of the copper active site, as judged by the lower frequencies of the nu(Cu-S)(Cys) stretching modes, much larger values of the epsilon(1)/epsilon(2) ratio, and the increased rhombicity of the EPR spectra.


Assuntos
Achromobacter cycloclastes , Azurina , Proteínas de Bactérias , Proteínas de Transporte , Metionina/genética , Mutação , Achromobacter cycloclastes/química , Achromobacter cycloclastes/genética , Azurina/química , Azurina/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Domínio Catalítico , Eletroquímica , Metaloproteínas/química , Metaloproteínas/genética , Metionina/metabolismo , Modelos Moleculares , Conformação Proteica , Análise Espectral Raman
3.
J Am Chem Soc ; 131(40): 14214-5, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19757774

RESUMO

Resonance Raman (RR) spectroscopy and density functional theory (DFT) calculations of oxochromium(IV,V) derivatives of 5,10,15-tris(pentafluorophenyl)corrole (tpfpc) are shown to provide useful information about the relative strength of the metal-oxo bond in high-valent Cr(IV) versus Cr(V) corroles. Isotope labeling of the terminal oxo group with (18)O revealed that the Cr(V)-oxo (perchromyl) stretch of (tpfpc)Cr(V)O vibrates at a frequency of 986 cm(-1) in carbon disulfide, consistent with a triply bonded Cr(V)[triple bond]O unit. In contrast, an acetonitrile solution produced RR scattering that rapidly changed with the number of scans collected and eventually became dominated by an (18)O-sensitive vibration at a significantly higher frequency of 1002 cm(-1). On the basis of DFT calculations and the observed (18/16)O isotopic shift, we assigned this new RR band at 1002 cm(-1) in acetonitrile as the Cr(IV)-oxo (chromyl) stretch of the autoreduced [(tpfpc)Cr(IV)O](-) product, which previously has been shown to form only during the course of the oxygen atom transfer (OAT) reaction with triphenylphosphine in acetonitrile or in the presence of a reducing chemical (cobaltocene) and electrochemical agents in other solvents. Consequently, RR observations indicate that the pi-bonding character of the chromyl bond is actually increased relative to that of the perchromyl bond, which is of interest if the beneficial role of acetonitrile in OAT catalysis by high-valent oxochromium(IV,V) corroles is to be elucidated.

4.
J Biol Inorg Chem ; 14(4): 611-20, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19224256

RESUMO

Metal-substituted blue copper proteins (cupredoxins) have been successfully used to study the effect of metal-ion identity on their active-site properties, specifically the coordination geometry and metal-ligand bond strengths. In this work, low-temperature (77 K) resonance Raman (RR) spectra of the blue copper protein Alcaligenes xylosoxidans azurin I and its Ni(II) derivative are reported. A detailed analysis of all observed bands is presented and responsiveness to metal substitution is discussed in terms of structural and bonding changes. The native cupric site exhibits a RR spectrum characteristic of a primarily trigonal planar (type 1) coordination geometry, identified by the nu(Cu-S)(Cys) markers at 373, 399, 409, and 430 cm(-1). Replacement of Cu(II) with Ni(II) results in optical and RR spectra that reveal (1) a large hypsochromic shift in the main (Cys)S --> M(II) charge-transfer absorption from 622 to 440 nm, (2) greatly reduced metal-thiolate bonding interaction, indicated by substantially lower nu(Ni-S)(Cys) stretching frequencies, (3) elevation of the cysteine nu(C( beta )-S) stretching, amide III, and rho (s)(C( beta )H(2)) scissors vibrational modes, and (4) primarily four-coordinated, trigonally distorted tetrahedral geometry of the Ni(II) site that is marked by characteristic nu(Ni-S)(Cys) stretching RR bands at 347, 364, and 391 cm(-1). Comparisons of the electronic and vibrational properties between A. xylosoxidans azurin I and its closely structurally related azurin from Pseudomonas aeruginosa are made and discussed. For cupric azurins, the intensity-weighted average M(II)-S(Cys) stretching frequencies are calculated to be nu(Cu-S)(iwa) = 406.3 and 407.6 cm(-1), respectively. These values decreased to nu(Ni-S)(iwa) = 359.3 and 365.5 cm(-1), respectively, after Ni(II) --> Cu(II) exchange, suggesting that the metal-thiolate interactions are similar in the two native proteins but are much less alike in their Ni(II)-substituted forms.


Assuntos
Alcaligenes/química , Azurina/química , Temperatura Baixa , Níquel/química , Análise Espectral Raman/métodos , Proteínas de Bactérias/química
5.
Inorg Chem ; 46(14): 5616-24, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-17547394

RESUMO

UV-visible, infrared (IR), and resonance Raman (RR) spectra were measured and analyzed for a high-valent molybdenum(V)-oxo complex of 5,10,15-tris[3,5-bis(trifluoromethyl)phenyl]corrole (1) at room temperature. The strength of the metal-oxo bond in 1 was found to be strongly solvent-dependent. Solid-state IR and RR spectra of 1 exhibited the MoVO stretching vibration at nu(MoVO)=969 cm(-1). It shifted up by 6 cm(-1) to 975 cm(-1) in n-hexane and then gradually shifted to lower frequencies in more polar solvents, down to 960 cm(-1) in dimethyl sulfoxide. The results imply that stronger acceptor solvents weaken the MoVO bond. The 45-cm(-1) frequency downshifts displayed by 1 containing an 18O label in the molybdenum(V)-oxo unit confirmed the assignments for the observed IR and RR nu(MoVO) bands. The solvent-induced frequency shift for the nu(MoVO) RR band, measured in a series of 25 organic solvents ranging from n-hexane (AN=0.0) to N-methylformamide (AN=32.1), did not decrease in direct proportion to Gutmann's solvent acceptor numbers (ANs). However, a good linear correlation of the nu(MoVO) frequency was found against an empirical "solvent polarity" scale (A+B) of Swain et al. J. Am. Chem. Soc. 1983, 105, 502-513. A molecular association was observed between chloroform and oxomolybdenum(V) corrole 1 through MoO...H/CCl3 hydrogen-bonding interactions. This association manifested itself as a shift of the nu(MoVO) RR band of 1 in CDCl3 to a higher frequency compared to that in CHCl3.

6.
Biochim Biophys Acta ; 1767(6): 712-24, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17434441

RESUMO

Chemical rescue of site-modified amino acids using externally supplied organic molecules represents a powerful method to investigate structure-function relationships in proteins. Here we provide definitive evidence that aryl and alkyl thiolates, reagents typically used for in vitro iron-sulfur cluster reconstitutions, serve as rescue ligands to a site-specifically modified [4Fe-4S](1+,2+) cluster in PsaC, a bacterial dicluster ferredoxin-like subunit of Photosystem I. PsaC binds two low-potential [4Fe-4S](1+,2+) clusters termed F(A) and F(B). In the C13G/C33S variant of PsaC, glycine has replaced cysteine at position 13 creating a protein that is missing one of the ligating amino acids to iron-sulfur cluster F(B). Using a variety of analytical techniques, including non-heme iron and acid-labile sulfur assays, and EPR, resonance Raman, and Mössbauer spectroscopies, we showed that the C13G/C33S variant of PsaC binds two [4Fe-4S](1+,2+) clusters, despite the absence of one of the biological ligands. (19)F NMR spectroscopy indicated that the external thiolate replaces cysteine 13 as a substitute ligand to the F(B) cluster. The finding that site-modified [4Fe-4S](1+,2+) clusters can be chemically rescued with external thiolates opens new opportunities for modulating their properties in proteins. In particular, it provides a mechanism to attach an additional electron transfer cofactor to the protein via a bound, external ligand.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Ferredoxinas/metabolismo , Ligantes , Complexo de Proteína do Fotossistema I/química
7.
Inorg Chem ; 45(21): 8474-6, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17029353

RESUMO

A copper-containing nitrite reductase from Alcaligenes xylosoxidans NCIMB 11015 has its own unique blue or type 1 copper protein resonance Raman spectrum in the usual Cu-S(Cys) stretching region, nu(Cu-S(Cys)), with a pair of strong peaks at 412 and 420 cm(-1) and a weak peak at 364 cm(-1). The predominantly nu(Cu-S(Cys)) Raman bands at 412, 420, and 364 cm(-1) of the type 1 copper site all shifted to higher frequencies upon binding of nitrite to the type 2 copper site, and the resonance Raman difference spectra progressively intensified with the increments of nitrite ion concentration. Positive support for substrate binding to the type 2 copper is provided by the nu(Cu-S(Cys)) bands in the resonance Raman spectrum of a type 2 copper-depleted enzyme, which is insensitive to the presence of NO2-. The shift to higher frequency of the Raman bands of the type 1 copper center with the addition of nitrite ions suggests a stronger Cu-S(Cys) interaction in the substrate-bound A. xylosoxidans nitrite reductase.


Assuntos
Alcaligenes/enzimologia , Cobre/análise , Nitrito Redutases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Nitrito Redutases/isolamento & purificação , Nitritos/química , Análise Espectral Raman
8.
Inorg Chem ; 44(16): 5745-52, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16060626

RESUMO

Nickel(II) and cobalt(II) derivatives of the blue copper protein Pseudomonas aeruginosa azurin have been studied by resonance Raman (RR) spectroscopy at liquid-nitrogen temperatures. Vibrational assignments for the observed RR bands of Ni(II)-azurin have been made through a study of (62)Ni-substituted azurin. A comparison of Ni(II)-azurin RR spectra with those of the wild type (Cu-containing) protein showed Ni(II)-S(Cys) stretching vibrations, nu(Ni-S)(Cys), at substantially lower frequencies (approximately 360 versus approximately 400 cm(-1), respectively), indicating that the Ni(II)-S(Cys) bond is much weaker than the corresponding Cu(II)-S(Cys) bond. Resonance enhanced predominantly nu(Ni-N)(His) modes indicate that the metal-N(His) bond distances in the Ni(II) derivative are the same as those in native azurin. The vibrational data also confirm a tetrahedral disposition of ligands about the metal in Ni(II)-azurin found in the protein crystallographic structures. As expected, excitation profile measurements on Ni(II)-azurin show that the nu(Ni-S)(Cys) assignable modes give maxima at the 440-nm absorption band, which confirms a S(Cys) --> Ni(II) charge-transfer origin of the 440-nm electronic transition in Ni(II)-substituted azurin.


Assuntos
Azurina/química , Cobalto/química , Metaloproteínas/química , Níquel/química , Pseudomonas aeruginosa/química , Análise Espectral Raman , Cobre/química , Eletroquímica
9.
Inorg Chem ; 43(21): 6600-8, 2004 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-15476357

RESUMO

As part of our efforts to develop the transition metal chemistry of corrolazines, which are ring-contracted porphyrinoid species most closely related to corroles, the vanadium and copper complexes (TBP)(8)Cz(H)V(IV)O (1) and (TBP)(8)CzCu(III) (2) of the ligand octakis(para-tert-butylphenyl)corrolazine [(TBP)(8)Cz] have been synthesized. The coordination behavior, preferred oxidation states, and general redox properties of metallocorrolazines are of particular interest. The corrolazine ligand in 1 was shown to contain a labile proton by acid/base titration and IR spectroscopy, serving as a -2 ligand rather than as the usual -3 donor. The oxidation state of the vanadium center in 1 was shown to be +4, in agreement with the overall neutral charge for this complex. The EPR spectrum of 1 reveals a rich signal consistent with a V(IV)(O) (d(1), S = 1/2) porphyrinoid species (g(xx) = 1.989, g(yy) = 1.972, g(zz) = 1.962). The electrochemical analysis of 1 shows behavior closer to that of a porphyrazine than a corrolazine, with a positively shifted, irreversible reduction at -0.65 V (vs Ag/AgCl). Resonance Raman and IR data for 1 confirm the presence of a triply bonded terminal oxo ligand with nu(V(16)O) = 975 cm(-1) and nu(V(18)O) = 939 cm(-1). The copper complex 2 exhibits a diamagnetic (1)H NMR spectrum, indicative of a bona fide square planar copper(III) (d(8), low-spin) complex. Previously reported copper corroles have been characterized as copper(III) complexes which exhibit a paramagnetic NMR spectrum at higher temperatures, indicative of a thermally accessible triplet excited state ([(corrole(*+))Cu(II)]). The NMR spectrum for 2 shows no paramagnetic behavior in the range 300-400 K, indicating that compound 2 does not have a thermally accessible triplet excited state. These data show that the corrolazine system is better able to stabilize the high oxidation state copper center than the corresponding corroles. Electrochemical studies of 2 reveal two reversible processes at +0.93 and -0.05 V, and bulk reduction of 2 with NaBH(4) generates the copper(II) species [(TBP)(8)CzCu(II)](-) (2a), which exhibits an EPR signal typical of a copper(II) porphyrinoid species.

10.
J Am Chem Soc ; 124(51): 15170-1, 2002 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-12487581

RESUMO

The synthesis and characterization of an oxomanganese(V) corrolazine, (TBP)8(Cz)Mn(V)O (2), are reported. This remarkably stable high-valent complex is obtained from the stoichiometric reaction of (TBP)8(Cz)Mn(III) (1) with m-CPBA and is easily purified by standard chromatographic methods on silica gel at room temperature. Complex 2 exhibits a diamagnetic 1H NMR spectrum indicative of a low-spin d2 Mn(V)O species. LDI-TOFMS of 2 shows the predicted isotopic envelope at m/z 1426.8. This envelope shifts to higher mass as expected after the facile exchange of the terminal oxo group with H218O. The resonance Raman spectrum of 2 either in solution or in the solid state shows a strongly enhanced Raman band for the stretching mode of the Mn-oxo bond, which also shifts as expected upon 18O substitution: 2(16O), 979 cm-1; 2(18O), 938 cm-1 (in CH2Cl2). Initial reactivity studies show that 2 rapidly transfers the terminal oxo ligand to PPh3, resulting in the quantitative formation of OPPh3 and concomitant reduction of 2 back to 1. Complex 2 is the first example of an oxomanganese(V)-porphyrinoid complex that can be isolated at room temperature.


Assuntos
Manganês/química , Metaloporfirinas/química , Metaloporfirinas/síntese química , Espectrofotometria Ultravioleta , Análise Espectral Raman
11.
J Biol Inorg Chem ; 7(7-8): 781-90, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12203014

RESUMO

The electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a Fe(III)(2)S(2) cluster in place. In contrast, the other proteins are isolated in colourless forms, although a Fe(III)(2)S(2) cluster may be assembled in the C42G protein via incubation with Fe(III)and sulfide. The four mutant proteins were isolated as stable mononuclear Hg(II)forms which were converted to unstable mononuclear Fe(III)preparations that contain both holo and apo protein. The Fe(III)systems were characterized by metal analysis and mass spectrometry and by electronic, electron paramagnetic resonance, X-ray absorption and resonance Raman spectroscopies. The dominant Fe(III) form in the C9A preparation is a Fe(S-Cys)(3)(OH) centre, similar to that observed previously in the C6S mutant protein. Related centres are present in the proteins NifU and IscU responsible for assembly and repair of iron-sulfur clusters in both prokaryotic and eukaryotic cells. In addition to Fe(S-Cys)(3)(OH) centres, the C9G, C42G and C42A preparations contain a second four-coordinate Fe(III)form in which a ligand appears to be supplied by the protein chain.


Assuntos
Cisteína/química , Ferro/química , Rubredoxinas/química , Sulfetos/química , Substituição de Aminoácidos , Clostridium/química , Cristalografia por Raios X , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Ligantes , Proteínas/química , Rubredoxinas/genética , Espectrometria de Massas por Ionização por Electrospray , Análise Espectral Raman
12.
Langmuir ; 14(26): 7378-7386, 1998 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31416111

RESUMO

The formation of three-dimensional self-assembled monolayers (3-D SAMs) generated by the adsorption of n-octadecyl disulfide onto colloidal gold and silver nanoparticles is described. The functionalized nanoparticles were characterized by solubility, transmission electron microscopy, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance spectroscopy, surface-enhanced Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On gold nanoparticles, this new functionalization method affords crystalline 3-D SAMs that are indistinct from those prepared by the analogous adsorption of n-octadecanethiol. On silver nanoparticles, however, the films derived from n-octadecyl disulfide appear to be somewhat less crystalline than those prepared similarly from n-octadecanethiol. The origin of this difference is briefly explored and discussed.

13.
Inorg Chem ; 36(13): 2760-2764, 1997 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-11669908

RESUMO

The heterobimetallic complex 1, [LV(&mgr;-O)(&mgr;-OAc)(2)MnL] (where L = hydridotris(pyrazolyl)borate), has been synthesized and characterized. X-ray crystal structural analysis of 1 gave the following parameters: C(24)H(29)B(2)N(13)O(5)VMn, Cmc2(1), a = 13.364(2) Å, b = 17.383(3) Å, c = 14.132(3) Å, Z = 4, V = 3289.9(16) Å(3). An analysis of the structure, optical and resonance Raman spectroscopies, and magnetic measurements indicates that a V(IV)=O.Mn(II) valence formulation is the best description of the oxo-bridged core in 1, although other resonance forms must also contribute.

14.
Inorg Chem ; 35(1): 199-209, 1996 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-11666185

RESUMO

Nickel(II) complexes of cycloalkanoporphyrins (CAPs) bearing a saturated carbon ring of varying size between pyrrole C(beta) and methine bridge carbon atoms are widespread in crude oil and related organic rich sediments. We have synthesized a series of NiCAPs containing meso,beta-ethano (NiCAP5), meso,beta-propano (NiCAP6), and meso,beta-butano (NiCAP7) groups and applied UV-visible absorption and resonance Raman (RR) spectroscopies to investigate the effects of the exocyclic ring size on the porphyrin structure and to establish vibrational CAP marker frequencies for petroporphyrins in fossil fuels. The RR spectra of NiCAPs, excited at or near porphyrin Soret ( approximately 400 nm) and Q (510-580 nm) bands are informative and display a rich array of skeletal and alkyl substituent modes. High-frequency (1300-1700 cm(-)(1)) structure-sensitive RR bands shift down considerably (up to 24 cm(-)(1)) with increasing size of the exocyclic ring, implicating increased nonplanar distortions of the tetrapyrrole macrocycle. Unlike in other petroporphyrins studied thus far, etio- and tetrahydrobenzoporphyrins, out-of-plane distortions of the porphyrin imposed by the meso,beta-cycloalkano ring are also sufficient to destroy the center of symmetry of the porphyrin pi-system and produce significant enhancement of the IR-active E(u) skeletal modes in the Q-band-excited RR spectra. The UV-visible absorption spectra also vary with the size of the exocyclic ring; both the Soret and Q bands progressively red shift as the cycloalkano chain becomes longer, implying a destabilization of the two highest occupied pi orbitals in NiCAP6 and NiCAP7. In addition, the size of the exocyclic ring in NiCAPs can be readily determined from the frequency of the approximately 900 cm(-)(1) marker band and the characteristic patterns of skeletal and substituent bands in the 700-1200 and nu(4) ( approximately 1380 cm(-)(1)) regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...